Publications

Journal Publications

[37] Development of quantum interconnects for next-generation information technologies, D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, arXiv:1912.06642. [link]

[36] Entangled radiofrequency-photonic sensor network, Y. Xia*, W. Li*, W. Clark, D. Hart, Q. Zhuang, and Z. Zhang, arXiv:1910.08825. [link]

[35] Practical route to entanglement-enhanced communication over noisy bosonic channels, H. Shi. Z. Zhang, and Q. Zhuang, arXiv:1909:11112. [link]

[34] Supervised learning enhanced by an entangled sensor network, Q. Zhuang and Z. Zhang, Phys. Rev. X 9, 041023 (2019). [link]

[33] Wave function engineering for spectrally-uncorrelated biphotons in the telecommunication band based on a machine-learning framework, C. Cui, R. Arian, S. Guha, N. Peyghambarian, Q. Zhuang, and Z. Zhang, Phys. Rev. Applied 12, 034059 (2019). [link]

[32] Quantum-computing architecture based on large-scale multi-dimensional continuous-variable cluster states in a scalable photonic platform, B.-H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, arXiv:1909.05455. [link]

[31] Covert sensing using floodlight illumination, C. N. Gagatsos, B. Bash. A. Datta, Z. Zhang, and S. Guha, Phys. Rev. A 99, 062321 (2019). [link]

[30] Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement, Y. Xia, Q. Zhuang, W. Clark, and Z. Zhang, Phys. Rev. A 99, 012328 (2019). Selected as an Editor’s Suggestion article. [link]

[29] Security-proof framework for two-way Gaussian quantum-key-distribution protocols, Q. Zhuang, Z. Zhang, N. Lütkenhaus, and J. H. Shapiro,  Phys. Rev. A 98, 032332 (2018). [link]

[28] High-order encoding schemes for floodlight quantum key distribution, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 98, 012323 (2018). [link]

[27] Experimental quantum key distribution at 1.3 Gbit/s secret-key rate over a 10-dB-loss channel, Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, Quantum Sci. Technol. 3, 025007 (2018). [link]

[26] Distributed quantum sensing using continuous-variable multipartite entanglement, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Pays. Rev. A 97, 032329 (2018). [link]

[25] Entanglement-enhanced lidars for simultaneous position and velocity measurements, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 96, 040304(R) (2017).

[24] Quantum illumination for enhanced detection of Rayleigh-fading targets, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 96, 020302(R) (2017). [link]

[23] Entanglement-enhanced Neyman-Pearson target detection using quantum illumination, Q. Zhuang, Z. Zhang, and J. H. Shapiro, J. Soc. Am. B 34, 1567-1572 (2017). [link]

[22] Optimum mixed-state discrimination for noisy entanglement-enhanced sensing, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. Lett. 118, 040801 (2017). [link]

[21] Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication, Z. Zhang, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. A. 95, 012332 (2017). [link]

[20] Efficient generation and spectral characterization of high-purity biphotons, C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, Opt. Express 25, 7300 (2017). [link]

[19] High-rate field demonstration of large-alphabet quantum key distribution, C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, Submitted. arXiv:1611.01139. [link]

[18] Floodlight quantum key distribution: A practical route to Gbps secret-key rates, Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. A 94, 012322 (2016). [link] 

[17] Entanglement-enhanced sensing in a lossy and noisy environment, Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 114, 110506 (2015). [link]

[16] Practical high-dimensional quantum key distribution with decoy states, D. Bunandar, Z. Zhang, J. H. Shapiro, and D. Englund, Phys. Rev. A 91, 022336 (2015). [link]

[15] Finite-key analysis of high-dimensional time-energy entanglement-based quantum key distribution, C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, and D. Englund, Quantum Inf. Process. 14, 1005 (2015). [link].

[14] Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding, T. ZhongH. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. LitaA. Restelli, J. C. Bienfang, R. P. Mirin, T. GerritsS. W. Nam, F. Marsili, M. D. Shaw,  Z. Zhang,  L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro and F. N. C. Wong, New J. Phys. 17, 022002 (2015). [link]

[13] Entanglement-based quantum communication secured by nonlocal dispersion compensationC. Lee, Z. Zhang, G. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and D. Englund, Phys. Rev. A 90, 062331 (2014). [link]

[12] Viewpoint: Two photons into oneZ. Zhang, Physics 7, 108 (2014). [link]

[11] Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry, Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 112, 120506 (2014). [link]

[10] Secure communication via quantum illumination, J. H. Shapiro, Z. Zhang, and F. N. C. Wong, Quantum Inf. Process. 13, 2171 (2014). [link]

[9] Entanglement’s benefit survives an entanglement-breaking channel, Z. Zhang, M. Tengner, T. Zhong, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 111, 010501 (2013). Editor's suggestion and selected for a Viewpoint in Physics. [link]

[8] High-dimensional quantum key distribution using dispersive optics, J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, Phys. Rev. A 87, 062322 (2013). [link]

[7] Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene, Z. Zhang and P. L. Voss, Opt. Lett. 36, 4569 (2011). [link]

[6] The quantum noise of guided wave acoustic Brillouin scattering with applications to continuous-variable quantum key distribution, Z. Zhang, Q. D. Xuan, and P. L. Voss, J. Mod. Opt. 58, 988-993 (2011). [link]

[5] A 24 km fiber-based discretely signaled continuous-variable quantum key distribution system, Q. D. Xuan, Z. Zhang, and P. L. Voss, Opt. Express 17, 24244-24249 (2009). [link]

[4] Security of a discretely signaled continuous variable quantum key distribution for high rate systemsZ. Zhang and P. L. Voss, Opt. Express 17, 12090-12108 (2009)[link]

[3] Unsymmetrical quantum key distribution using tripartite entanglement, J. Xiong, Z. Zhang, N. Zhou, J. Peng, and G. Zeng, Commun. Theor. Phys. 47, 441-445 (2007). [link]

[2] An integrable optic-fiber coherent state quantum identification system, G. He, G. Zeng, J. Zhu, Z. Zhang, Q. Wang, X. Zhou, X. Qian, and J. Peng, Chin. J. Laser 34, 924-929 (2007). [link]

[1] Quantum identity authentication based on ping-pong technique for photonsZ. Zhang, G. Zeng, N. Zhou, and J. Xiong, Phys. Lett. A 356, 199-205 (2006). [link]